
Dataset Information
Develop a Deep learning program to identify when an article might be fake news.

Attributes
id: unique id for a news article
title: the title of a news article
author: author of the news article
text: the text of the article; could be incomplete
label: a label that marks the article as potentially unreliable

1: unreliable
0: reliable

Import Modules

Loading the Dataset

id title author text label

0 0 House Dem Aide: We Didn’t Even See
Comey’s Let... Darrell Lucus House Dem Aide: We Didn’t Even See

Comey’s Let... 1

1 1 FLYNN: Hillary Clinton, Big Woman on
Campus - ... Daniel J. Flynn Ever get the feeling your life circles the

rou... 0

2 2 Why the Truth Might Get You Fired Consortiumnews.com Why the Truth Might Get You Fired
October 29, ... 1

3 3 15 Civilians Killed In Single US Airstrike
Hav... Jessica Purkiss Videos 15 Civilians Killed In Single US

Airstr... 1

4 4 Iranian woman jailed for fictional
unpublished... Howard Portnoy Print \nAn Iranian woman has been

sentenced to... 1

'House Dem Aide: We Didn’t Even See Comey’s Letter Until Jason Chaffetz Tweeted It'

In [21]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import re

import nltk
import warnings
%matplotlib inline

warnings.filterwarnings('ignore')

In [10]: df = pd.read_csv('train.csv')
df.head()

Out[10]:

In [5]: df['title'][0]

Out[5]:

In [6]: df['text'][0]

'House Dem Aide: We Didn’t Even See Comey’s Letter Until Jason Chaffetz Tweeted It By Darrell
Lucus on October 30, 2016 Subscribe Jason Chaffetz on the stump in American Fork, Utah (image

courtesy Michael Jolley, available under a Creative Commons-BY license) \nWith apologies to Kei
th Olbermann, there is no doubt who the Worst Person in The World is this week–FBI Director Ja
mes Comey. But according to a House Democratic aide, it looks like we also know who the second-
worst person is as well. It turns out that when Comey sent his now-infamous letter announcing t

hat the FBI was looking into emails that may be related to Hillary Clinton’s email server, the
ranking Democrats on the relevant committees didn’t hear about it from Comey. They found out v
ia a tweet from one of the Republican committee chairmen. \nAs we now know, Comey notified the
Republican chairmen and Democratic ranking members of the House Intelligence, Judiciary, and Ov

ersight committees that his agency was reviewing emails it had recently discovered in order to
see if they contained classified information. Not long after this letter went out, Oversight Co
mmittee Chairman Jason Chaffetz set the political world ablaze with this tweet. FBI Dir just in
formed me, "The FBI has learned of the existence of emails that appear to be pertinent to the i

nvestigation." Case reopened \n— Jason Chaffetz (@jasoninthehouse) October 28, 2016 \nOf cours
e, we now know that this was not the case . Comey was actually saying that it was reviewing the
emails in light of “an unrelated case”–which we now know to be Anthony Weiner’s sexting wit
h a teenager. But apparently such little things as facts didn’t matter to Chaffetz. The Utah R

epublican had already vowed to initiate a raft of investigations if Hillary wins–at least two
years’ worth, and possibly an entire term’s worth of them. Apparently Chaffetz thought the FB
I was already doing his work for him–resulting in a tweet that briefly roiled the nation befor
e cooler heads realized it was a dud. \nBut according to a senior House Democratic aide, misrea

ding that letter may have been the least of Chaffetz’ sins. That aide told Shareblue that his
boss and other Democrats didn’t even know about Comey’s letter at the time–and only found ou
t when they checked Twitter. “Democratic Ranking Members on the relevant committees didn’t re
ceive Comey’s letter until after the Republican Chairmen. In fact, the Democratic Ranking Memb

ers didn’ receive it until after the Chairman of the Oversight and Government Reform Committe
e, Jason Chaffetz, tweeted it out and made it public.” \nSo let’s see if we’ve got this righ
t. The FBI director tells Chaffetz and other GOP committee chairmen about a major development i
n a potentially politically explosive investigation, and neither Chaffetz nor his other colleag

ues had the courtesy to let their Democratic counterparts know about it. Instead, according to
this aide, he made them find out about it on Twitter. \nThere has already been talk on Daily Ko
s that Comey himself provided advance notice of this letter to Chaffetz and other Republicans,
giving them time to turn on the spin machine. That may make for good theater, but there is noth

ing so far that even suggests this is the case. After all, there is nothing so far that suggest
s that Comey was anything other than grossly incompetent and tone-deaf. \nWhat it does suggest,
however, is that Chaffetz is acting in a way that makes Dan Burton and Darrell Issa look like m
odels of responsibility and bipartisanship. He didn’t even have the decency to notify ranking

member Elijah Cummings about something this explosive. If that doesn’t trample on basic standa
rds of fairness, I don’t know what does. \nGranted, it’s not likely that Chaffetz will have t
o answer for this. He sits in a ridiculously Republican district anchored in Provo and Orem; it
has a Cook Partisan Voting Index of R+25, and gave Mitt Romney a punishing 78 percent of the vo

te in 2012. Moreover, the Republican House leadership has given its full support to Chaffetz’
planned fishing expedition. But that doesn’t mean we can’t turn the hot lights on him. After
all, he is a textbook example of what the House has become under Republican control. And he is
also the Second Worst Person in the World. About Darrell Lucus \nDarrell is a 30-something grad

uate of the University of North Carolina who considers himself a journalist of the old school.
An attempt to turn him into a member of the religious right in college only succeeded in turnin
g him into the religious right\'s worst nightmare--a charismatic Christian who is an unapologet
ic liberal. His desire to stand up for those who have been scared into silence only increased w

hen he survived an abusive three-year marriage. You may know him on Daily Kos as Christian Dem
in NC . Follow him on Twitter @DarrellLucus or connect with him on Facebook . Click here to buy
Darrell a Mello Yello. Connect'

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 20800 entries, 0 to 20799
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----

 0 id 20800 non-null int64
 1 title 20242 non-null object
 2 author 18843 non-null object
 3 text 20761 non-null object

 4 label 20800 non-null int64
dtypes: int64(2), object(3)
memory usage: 812.6+ KB

Out[6]:

In [7]: df.info()

Data Proprocessing

20761

0 house dem aide: we didn’t even see comey’s let...
1 ever get the feeling your life circles the rou...
2 why the truth might get you fired october 29, ...

3 videos 15 civilians killed in single us airstr...
4 print \nan iranian woman has been sentenced to...
 ...
20795 rapper t. i. unloaded on black celebrities who...

20796 when the green bay packers lost to the washing...
20797 the macy’s of today grew from the union of sev...
20798 nato, russia to hold parallel exercises in bal...
20799 david swanson is an author, activist, journa...

Name: clean_news, Length: 20761, dtype: object

0 house dem aide we didnt even see comeys letter...

1 ever get the feeling your life circles the rou...
2 why the truth might get you fired october 29 2...
3 videos 15 civilians killed in single us airstr...
4 print an iranian woman has been sentenced to s...

 ...
20795 rapper t i unloaded on black celebrities who m...
20796 when the green bay packers lost to the washing...
20797 the macys of today grew from the union of seve...

20798 nato russia to hold parallel exercises in balk...
20799 david swanson is an author activist journalis...
Name: clean_news, Length: 20761, dtype: object

text label clean_news

0 House Dem Aide: We Didn’t Even See Comey’s Let... 1 house dem aide didnt even see comeys letter ja...

1 Ever get the feeling your life circles the rou... 0 ever get feeling life circles roundabout rathe...

2 Why the Truth Might Get You Fired October 29, ... 1 truth might get fired october 29 2016 tension ...

3 Videos 15 Civilians Killed In Single US Airstr... 1 videos 15 civilians killed single us airstrike...

4 Print \nAn Iranian woman has been sentenced to... 1 print iranian woman sentenced six years prison...

In [11]: # drop unnecessary columns
df = df.drop(columns=['id', 'title', 'author'], axis=1)

In [12]: # drop null values

df = df.dropna(axis=0)

In [13]: len(df)

Out[13]:

In []: # remove special characters and punctuations

In [14]: df['clean_news'] = df['text'].str.lower()

df['clean_news']

Out[14]:

In [19]: df['clean_news'] = df['clean_news'].str.replace('[^A-Za-z0-9\s]', '')
df['clean_news'] = df['clean_news'].str.replace('\n', '')

df['clean_news'] = df['clean_news'].str.replace('\s+', ' ')
df['clean_news']

Out[19]:

In [20]: # remove stopwords
from nltk.corpus import stopwords
stop = stopwords.words('english')
df['clean_news'] = df['clean_news'].apply(lambda x: " ".join([word for word in x.split() if w

df.head()

Out[20]:

Exploratory Data Analysis
In [22]: # visualize the frequent words

all_words = " ".join([sentence for sentence in df['clean_news']])

wordcloud = WordCloud(width=800, height=500, random_state=42, max_font_size=100).generate(all_w

plot the graph
plt.figure(figsize=(15, 9))
plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')
plt.show()

In [23]: # visualize the frequent words for genuine news
all_words = " ".join([sentence for sentence in df['clean_news'][df['label']==0]])

wordcloud = WordCloud(width=800, height=500, random_state=42, max_font_size=100).generate(all_w

plot the graph
plt.figure(figsize=(15, 9))
plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')
plt.show()

Create Word Embeddings

In [24]: # visualize the frequent words for fake news

all_words = " ".join([sentence for sentence in df['clean_news'][df['label']==1]])

wordcloud = WordCloud(width=800, height=500, random_state=42, max_font_size=100).generate(all_w

plot the graph
plt.figure(figsize=(15, 9))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')

plt.show()

199536

array([-0.13128 , -0.45199999, 0.043399 , -0.99798 , -0.21053 ,
 -0.95867997, -0.24608999, 0.48413 , 0.18178 , 0.47499999,

 -0.22305 , 0.30063999, 0.43496001, -0.36050001, 0.20245001,
 -0.52594 , -0.34707999, 0.0075873 , -1.04970002, 0.18673 ,
 0.57369 , 0.43814 , 0.098659 , 0.38769999, -0.22579999,
 0.41911 , 0.043602 , -0.73519999, -0.53583002, 0.19276001,

 -0.21961001, 0.42515001, -0.19081999, 0.47187001, 0.18826 ,
 0.13357 , 0.41839001, 1.31379998, 0.35677999, -0.32172 ,
 -1.22570002, -0.26635 , 0.36715999, -0.27586001, -0.53245997,
 0.16786 , -0.11253 , -0.99958998, -0.60706002, -0.89270997,

 0.65156001, -0.88783997, 0.049233 , 0.67110997, -0.27553001,
 -2.40050006, -0.36989 , 0.29135999, 1.34979999, 1.73529994,
 0.27000001, 0.021299 , 0.14421999, 0.023784 , 0.33643001,
 -0.35475999, 1.09210002, 1.48450005, 0.49430001, 0.15688001,

 0.34678999, -0.57221001, 0.12093 , -1.26160002, 1.05410004,
 0.064335 , -0.002732 , 0.19038001, -1.76429999, 0.055068 ,
 1.47370005, -0.41782001, -0.57341999, -0.12129 , -1.31690001,
 -0.73882997, 0.17682 , -0.019991 , -0.49175999, -0.55247003,

 1.06229997, -0.62879002, 0.29098001, 0.13237999, -0.70414001,
 0.67128003, -0.085462 , -0.30526 , -0.045495 , 0.56509])

Input Split

In [26]: from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences

In [27]: # tokenize text
tokenizer = Tokenizer()

tokenizer.fit_on_texts(df['clean_news'])
word_index = tokenizer.word_index
vocab_size = len(word_index)
vocab_size

Out[27]:

In [48]: # padding data
sequences = tokenizer.texts_to_sequences(df['clean_news'])
padded_seq = pad_sequences(sequences, maxlen=500, padding='post', truncating='post')

In [40]: # create embedding index
embedding_index = {}

with open('glove.6B.100d.txt', encoding='utf-8') as f:
 for line in f:
 values = line.split()
 word = values[0]

 coefs = np.asarray(values[1:], dtype='float32')
 embedding_index[word] = coefs

In [42]: # create embedding matrix

embedding_matrix = np.zeros((vocab_size+1, 100))
for word, i in word_index.items():
 embedding_vector = embedding_index.get(word)
 if embedding_vector is not None:

 embedding_matrix[i] = embedding_vector

In [45]: embedding_matrix[1]

Out[45]:

In [49]: padded_seq[1]

array([258, 28, 1557, 92, 4913, 27340, 415, 2246,
 2067, 377, 532, 1558, 5339, 29, 12, 796,

 179, 361, 1917, 17459, 829, 20147, 2990, 2626,
 640, 747, 252, 2025, 3113, 10995, 125, 39,
 2086, 78618, 3022, 3646, 3561, 3113, 835, 153,
 3458, 29, 9775, 51963, 3724, 18, 218, 20,

 3234, 20147, 10024, 625, 11, 481, 2494, 2417,
 8173, 442, 701, 613, 147, 14, 22280, 902,
 324, 8, 164, 3712, 60, 11541, 867, 2644,
 16, 864, 4422, 176, 5305, 2086, 4253, 40,

 257, 835, 192, 10, 2403, 10, 2086, 9775,
 58, 8372, 11246, 104297, 20952, 3713, 20953, 78619,
 104298, 5459, 31169, 25044, 7998, 19120, 65806, 4403,
 168, 261, 25045, 4403, 162, 355, 904, 1581,

 424, 1302, 20, 344, 37, 1963, 187, 394,
 59, 8107, 3658, 18529, 177, 1356, 745, 7401,
 2379, 7787, 1602, 2532, 152, 12, 458, 10153,
 11900, 17701, 8681, 128, 102, 22769, 10582, 10025,

 13518, 9418, 316, 7, 136, 626, 480, 370,
 95, 47538, 2439, 19434, 1139, 9775, 7163, 3591,
 8173, 4, 840, 169, 625, 14079, 414, 51,
 465, 177, 1, 446, 1139, 446, 1078, 1139,

 10, 39, 369, 182, 446, 1139, 8031, 51,
 51, 1557, 30058, 1703, 516, 16, 2633, 19772,
 1139, 8031, 957, 11901, 165, 60, 493, 957,
 16, 588, 6, 19772, 13107, 35329, 1635, 1688,

 3751, 2121, 254, 12, 104, 19772, 1099, 287,
 8032, 12768, 1159, 19121, 52, 14721, 8208, 22,
 6, 3, 20548, 3724, 69, 3241, 69, 292,
 893, 2020, 17201, 37, 1615, 250, 448, 2825,

 14721, 12, 562, 104299, 471, 7358, 1910, 2322,
 1438, 1502, 1212, 592, 448, 674, 1452, 22,
 6, 2420, 1387, 592, 197, 12000, 142, 192,
 42, 49, 6, 102, 14885, 1502, 230, 292,

 973, 1019, 137, 209, 627, 994, 17202, 8,
 15, 6, 4785, 3640, 29, 12, 9944, 907,
 86, 2648, 1521, 229, 176, 13108, 1376, 20147,
 481, 95, 11, 164, 2557, 12, 9203, 70,

 146, 604, 1732, 2688, 263, 25735, 41482, 4166,
 21, 20147, 13639, 4977, 118, 39, 43, 8681,
 86, 320, 2478, 447, 1049, 335, 1304, 1273,
 447, 1049, 247, 891, 1871, 335, 179, 361,

 1917, 4311, 361, 44, 41, 7472, 489, 1464,
 16, 335, 1453, 683, 737, 1032, 169, 934,
 30, 3341, 557, 11, 361, 5797, 7952, 20954,
 6089, 148, 51964, 7203, 1387, 637, 418, 1615,

 37, 53, 8, 1809, 47539, 11442, 3561, 53,
 19773, 981, 12649, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0])

Out[49]:

In [50]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(padded_seq, df['label'], test_size=0.20, ra

Model Training

Model: "sequential_2"

Layer (type) Output Shape Param #
===
embedding_2 (Embedding) (None, None, 100) 19953700

dropout_5 (Dropout) (None, None, 100) 0

lstm_3 (LSTM) (None, 128) 117248

dropout_6 (Dropout) (None, 128) 0

dense_5 (Dense) (None, 1) 129

===
Total params: 20,071,077
Trainable params: 117,377
Non-trainable params: 19,953,700

In [63]: from keras.layers import LSTM, Dropout, Dense, Embedding
from keras import Sequential

model = Sequential([

Embedding(vocab_size+1, 100, weights=[embedding_matrix], trainable=False),
Dropout(0.2),
LSTM(128, return_sequences=True),
LSTM(128),

Dropout(0.2),
Dense(512),
Dropout(0.2),
Dense(256),

Dense(1, activation='sigmoid')
])

model = Sequential([

 Embedding(vocab_size+1, 100, weights=[embedding_matrix], trainable=False),
 Dropout(0.2),
 LSTM(128),
 Dropout(0.2),

 Dense(256),
 Dense(1, activation='sigmoid')
])

In [64]: model.compile(loss='binary_crossentropy', optimizer='adam', metrics='accuracy')
model.summary()

In [61]: # train the model
history = model.fit(x_train, y_train, epochs=10, batch_size=256, validation_data=(x_test, y_tes

Epoch 1/10
65/65 [==============================] - 42s 617ms/step - loss: 0.6541 - accuracy: 0.6098 - val

_loss: 0.6522 - val_accuracy: 0.6152
Epoch 2/10
65/65 [==============================] - 39s 607ms/step - loss: 0.6436 - accuracy: 0.6241 - val
_loss: 0.5878 - val_accuracy: 0.6769

Epoch 3/10
65/65 [==============================] - 40s 611ms/step - loss: 0.6057 - accuracy: 0.6688 - val
_loss: 0.5908 - val_accuracy: 0.7144
Epoch 4/10

65/65 [==============================] - 40s 613ms/step - loss: 0.5693 - accuracy: 0.7239 - val
_loss: 0.6280 - val_accuracy: 0.6326
Epoch 5/10
65/65 [==============================] - 40s 612ms/step - loss: 0.5990 - accuracy: 0.6699 - val

_loss: 0.5887 - val_accuracy: 0.6959
Epoch 6/10
65/65 [==============================] - 40s 614ms/step - loss: 0.6060 - accuracy: 0.6593 - val
_loss: 0.5807 - val_accuracy: 0.6766

Epoch 7/10
65/65 [==============================] - 40s 609ms/step - loss: 0.5546 - accuracy: 0.6906 - val
_loss: 0.5704 - val_accuracy: 0.6641
Epoch 8/10

65/65 [==============================] - 39s 606ms/step - loss: 0.5517 - accuracy: 0.6973 - val
_loss: 0.5553 - val_accuracy: 0.6689
Epoch 9/10
65/65 [==============================] - 33s 508ms/step - loss: 0.5400 - accuracy: 0.6855 - val

_loss: 0.5281 - val_accuracy: 0.7226
Epoch 10/10
65/65 [==============================] - 40s 609ms/step - loss: 0.5244 - accuracy: 0.7236 - val
_loss: 0.5442 - val_accuracy: 0.6988

In [62]: # visualize the results
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.xlabel('epochs')

plt.ylabel('accuracy')
plt.legend(['Train', 'Test'])
plt.show()

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.xlabel('epochs')
plt.ylabel('loss')

plt.legend(['Train', 'Test'])
plt.show()

In []:

